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Abstract. Analytical expressions for both Brst- and second-order reduction facton are 
oblamed for orbilal doublet syjstems which are smngly coupled to their surroundings 
using a recently derived transformation method. The problem is often referred to as the 
E @ e Jahw'Bller system. The reduction factors are found hom the symmeuy-adapted 
cubic nbronic slates, which have been derived in the preceding paper, in the presence 
of so" warping in the potential energy trough. The resulll for the Brst-order reduction 
faclon are shown to compare favourably with earlier numerical results, although the 
conBgurations are necessarily different. The calculations of the second-order reduction 
factors appear to be the Brst of their lypc for this system. It is shown how they may 
be used in modelling experimental data involving orbital doublets for E-type uniaxial 
Stress& 

1. Introduction 

Reduction factors (RFS) are often the best way to show that a particular ion is subject 
to a Jahn-lkller (JT) effect This was fust pointed out by Ham (1965) for orbital 
triplet systems and subsequently by the same author (Ham 1968) for orbital doublet 
systems. The first examples of real systems were those commonly referred to as 
T @ e in which the orbital triplet is coupled to the e modes of its surroundings. 
Many examples of this system have been identified, particularly for ions occupying 
octahedral sites as given in the original work of Ham (1965) and in the many texts 
and reviews following this (e.g. Bates 1978). Much more recently, work on ions in 
substitutional sites in semiconducting hosts showed that, in this environment, a T ion 
could be approximately equally or even more strongly coupled to t,-modes than to 
e-modes thus giving examples of T@% and T@ (e+ tZ) JT systems (see, for example, 
the review by Clejaud 1985). There are many examples in which optical transitions 
are observed between T and E states of ions in semiconductors and EPR is undertaken 
within the E states. Consequently, it is necessary to undertake detailed calculations 
of the RFs for the E @ e system to match those of the more complicated T @ (e + b) 
JT system. 

The effects of RFS are generally not so dramatic in the E @ e  JT system as they 
are in orbital triplet systems. This is because only orbital operators of A, symmetry 
are completely quenched in the strong-coupling limit and also because the second- 
order JT RFS, which arise from the couplings of a perturbation to excited vibronic 
states, usually appear only with operators of E-type symmetry. This is in contrast to 
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orbital triplet systems where operators of all symmetries give contributions in second- 
order which can dominate first-order contributions Nevertheless, they can have very 
important consequences in some special situations; for example, the EPR spectrum 
from ions having a *E ground state can show marked changes according to the nature 
of the JT effect when random strains are included (e.g. Reynolds and Boatner 1975). 

The E 8 e JT system has been studied extensively both experimentally and 
theoretically (see, for example, the book by Bersuker and Polinger 1989). However, 
RFS have not figured as prominently in the literature as in the case of orbital triplet 
systems for reasons outlined above, but nevertheless they do have a very important 
role to play in a number of cases. Although much of the theory of RFS for E 0 e 
was given in the original work of Ham (1968). there are many other publications, 
including very recent articles, dealing with other aspects and further developments of 
the problem. For example, a method of calculating the RFS of a JT system interacting 
with many modes of vibration was described by O’Brien (1983) while Fletcher and 
Stedman (1984) discussed the paradox conceming RFs in excited orbital doublet states 
which arose between the calculations of h u n g  and Kleiner (1974) and those of 
Gauthier and Walker (1976). Recently, Martinelli et af (1991) tackled the problem 
within the continued-fraction formalism. 

From a general theoretical point of view, part of the problem is the difficulty 
of actually performing the calculations as many of the more sophisticated analytical 
approaches are difficult to manipulate. Thus many of the methods tend to employ 
numerical techniques. A different approach to the problem has recently been 
developed by two of the present authors (Badran and Bates 1991, to be referred 
to as I) for studying the strongly coupled E 0 e systems in the presence of warping 
of the potential energy surface. In I, warping was described by a quadratic coupling 
term, measured by the coupling constant V,, or by anharmonicity, measured by the 
parameter B. The method is analytical and involves a transformation followed by an 
energy minimization procedure. 

The object of this paper is to use this method to obtain analytical expressions for 
first- and second-order RFS. The latter factors, which do not appear to have been 
calculated previously for this system, can arise from uniaxial stress. The ground and 
excited cubic vibronic states derived in I and Jamila et a1 (1992, to be referred to 
as 11) respectively will be used to find the reduced matrix elements of the orbital 
operators, which depend upon various overlaps between the oscillator states located 
in adjacent wells. The first-order RFs will then be recalculated using corrections from 
anisotropy, the results both with and without anisotropy will be compared with the 
available analytical and numerical results. This is followed by a calculation of the 
secondader RFS for an orbital operator of E symmetry. We note that there are no 
contributions from the spin-orbit coupling, usually the largest perturbation, as it has 
zero matrix elements within the E states. (We note also that the term ‘second-order 
reduction factors’ in E 0 e has a different meaning in the work of Vekhter (1973) 
where it is used to describe the coupling of ,E to excited orbital states.) 

2. Background and general definitions 

For an orbital doublet system in cubic symmetry, an external perturbation (such as 
that from a magnetic field, from strain, from the electron and/or nuclear spin etc) 
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can, be written in the general form 

where 

Tz = -{(lW~l+ I4(W 
T - 1 .  - 

3 - Zl(lO)(4 - l4(@l). 
In the above, IO), 1.) are the orbital basis states; the operators T,, T and T3 are 
related to those of Ham (1968) by TI = -$U,, Tz = -;Uc, T3 = -jA,. Also I 
is the identity matrix and GI, G,, G, and G, are functions of the components of 
external perturbations. G, has A, symmeay under the cubic group, Gz belongs to 
the Az irreducible representation, while G, and G, transform as partners belonging 
to the E representation. 

The effective Hamiltonian, obtained when the matrix elemens of the Hamiltonian 
given by (2.1) are calculated between the doublet vibronic states, has the form 

'HeE = WG,I + PGzT3 + Q(G,T,+ G,Tz) (2.2) 

where W ,  P and Q are factors to be determined. In first order, W = 1, P = p 
and Q = q where p and g are the firstader JT RFS (Ham 1968). The Hamiltonians 
(2.1) and (22) are obtained on symmeay grounds and are independent of the details 
of the model under consideration. It shows that, in first order, matrix elements of 
the symmetric term G, are unaffected by the rr coupling but, in contrast, the other 
terms Gz and G,, G, are reduced by p and q respectively. 

Thus the lirst-order RF q is defined by 

4 = ( ~ E ~ O ~ O I ~ I I E E ~ O ~ O ) / ( Q I ~ I I ~ )  = (E6; ~ ~ ~ l ~ z I E a ~ O ~ O ) / ( ~ l ~ z l ~ )  (23) 

and p by: 

P = (E<; O,OlT31 EO; 030) /(e IT3lQ) (2.4) 

where IEe; 0,O) and IE,;O,O) are the ground vibronic states (I, 11). A thud RF r is 
also needed to allow for the matrix elements of Hi, between the vibronic E ground 
state and the inversion A, singlet state. (Note that only the arrangement in which the 
inversion level has A, symmetry, i.e. the product V,V, or the anharmonicity constant 
B is positive, where V. is the ion-lattice coupling constant, will be discussed in detail 
here.) This RF becomes important when the inversion splitting 6 becomes small as 
the term it multiplies can then be of the same order of magnitude as the magnetic 
terms in Hi,,. r is defined by 

P = 2(A1;0, OITIIE,;O,O) = 2(Al;0,01TzIE,;0,0). (2.5) 

(In the case of the product VEVz being negative, it is usual to introduce the RF r' in 
place of r. Also, in this case, the inversion level has 4 symmehy instead of A,.) 
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3. Calculation of first-order reduction factors 

The first-order R F ~  of the system will be calculated, firstly, using the cubic vibronic 
ground states. These may be obtained by substituting z1 = 2) = 0 in the general 
expressions for the cubic vibronic excited states: (11) 

R I Badran et a1 

I A ~ ; U , ~ )  = & ~ , ( u , v ) [ i +  (-i~i(io;;e:c;) + io:;e:f:) + io:;e;fVy)) 

( 3 4  
I E , ; ~ , ~ )  = &N3(U,~)(io:;e,uE:) - ;p: ;e ;E:)  - ;p;;e;q) 

/E,; U , v )  = &qU, .)(io:; elc:) - io;; e;.;)) 

where N,(u, v) .  N,(u, D) and N3(u,  v )  are the normalizing factors given in equation 
(4.9) of 11. Secondly, the calculation will be repeated after adding in the corrections 
to the ground states arising from anisotropy (see I) for the two cases of quadratic 
coupling and anharmonicity. 

3.1. Simple catcufarim: M anisorropy 
From the above, the following results are obtained: 

where SE is the overlap of the oscillator ground states given in equation (4.10) of 11. 
It should be noted that, in the strong coupling limit when SE + 0, the RFS U and D 
satisfy the well known relation 2q - 1 = p and that the ratio r / q  tends to the value 
of J2 in the limit of V, or IBI + CO. These results are well known (see Bates 1978, 
for example). 

The above calculations are non-adiabatic in that all parts of the Hamiltonian are 
contained within the derivation of the vibronic states above. Thus the RF p decays 
exponentially to zero in the strong-coupling limit and is not exactly zero as in the 
adiabatic approximation (Ham 1992). 

3.2. Calculation with anisotropy 

The first-order RFs are recalculated using the cubic states corrected for anisotropy 
arising in both the quadratic coupling and anharmonicity cases. 

3.2.1. Ankotropy porn ‘Hnuad. ‘Anhotrow’ is introduced into the potential wells 
when the terms 6, and 6, are added as penurbations (I). However, this can 
only be undertaken accurately for the ground states in each well (and then using 
only first order perturbation theory) and thus it follows that, when appropriate 
cubic combinations of these new states are taken, only the ground vibronic states 
are accurate. Although it is possible, in principle, to go beyond the Iirst-order of 
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perturbation theory, the extra complexity needed to maintain accuracy is considerable 
and is not considered to be worthwhile. (Details of the method and of the corrected 
states are given in section 5.1 of I.) 

The revised Fws are given by 

4 = ( 1  + 2Sf3(1+ q L u ) ) / ( s ;  + 2 )  

p =  [3s;/(sf3+2)](1+ ; L ~  - F, - :F,L) 

(3.3) 

(3.4) 

T =  [ l - s ; ( l + ~ L u + ~ F ~ ( l - 4 L ) ) ] / J ~  (3.5) 

where 

FI = 1/(44- + J) Fz = 1/4(4-  + 4 J )  U = &/J (3.6) 

and where 

4 - = 1 / ( 1 - L )  J=TW,/Ef i .  (3.7) 

In these equations, L is the warping parameter, S; is the new overlap of the oscillator 
ground states in adjacent wells as given in equation (5.6) of I, EEe is the JT energy 
(see 11, (29)) and LE is the phonon quantum. The above results are correct to first 
order in L only. 

3.22. Anisotropy from ‘HHonharm. Calculations similar to those above have been 
undertaken by replacing the quadratic coupling term by the anharmonic term. The 
ground states in each well are changed (see section 5.2 of I) and the new reduction 
factors, correct to first-order terms in the new warping parameter L’, are given by 

q =  [1+2s;(l+ ;L‘u)]/(sg+2) (3.8) 

p = [3S$/(Sg + 2)][1+ $L‘u - A,(1+ L‘)] (3.9) 

r = [I - S ~ ( I  + 3 ~ ~ u ~ l / J ~  (3.10) 

where 

AI = 1 / (  J + 4) (3.11) 

and S; is the new oscillator overlap (as given in equation (5.18) of I). 

3.3. Results 

Figure 1 shows the calculated values of the RF q plotted as a function of EEe/(bE) 
for L = IL’I = 0.1 from the formulae derived above. Also shown in the figure 
are the analytical calculations of Ham (1968) and the numerical results of Child and 
Longuet-Higgins (1961) without warping. Despite the differences in the bases of 
OUT calculations compared to the other calculations cited, the agreement between 
all results is good particularly in the strong-coupling limit. In the moderately 
strong coupling region (i.e. Efi/(TWE) of the order of unity), the values obtained 
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2 3 4 5 6 

P i g ”  1. The variation of the fnt-order reduetion factor q as a function of Eb/ (hwe)  
for L (or IL‘I) = 0.1. The anaiytical results of Ham (1968) when only linear coupling 
tamsare considered: ---I---; the numerical resulbof Child and Longuet-Higgins (1961) 
without warping: y our isotropic results: - - -; ow results with anisotropy (quadratic 
term): - - -; our results with anisompy (anharmonic term): - - - -_  

for q in both the isotropic and anisotropic calculations are larger than the values 
obtained numerically and analytically (Ham 1968), with the anisotropic results from 
the anharmonic model having the larger values than those from quadratic coupling. 
This indicates that the incorporation of anisotropic effects from the anharmonic term 
increases the size of reduction in the matrix element of the TI or Tz operator between 
the E vibronic ground states. A possible reason for t h s  is the smaller values of the 
oscillator overlaps with anharmonicity (as also noted in 11). 

Figure 2 shows the calculated values of p plotted as a function of EEe/(hwE) 
together with the other analytical and numerical calculations as before (Child and 
Longuet-Higgins 1961, Ham 1968). Although the values obtained using the isotropic 
model are larger than the values obtained numerically, the addition of either 
anharmonicity or quadratic coupling lowers the values of p towards those obtained 
numerically and analytically. This is not only as a result of an increase in the oscillator 
overlap but also because there are additional terms present in the expressions (3.4) 
and (3.10) which are more dominant in the region of moderately strong coupling. It 
seems the effect of anisotropy in this RF is opposite to that found with q. However, 
the results are very similar in the strong-coupling limit. We note also that the value 
of 2q - 1 deviates slightly from the value of p. Figure 3 shows the equivalent values 
obtained for r from equations (3.2), (3.5) and (3.9). Comments similar to those for 
q and p apply to T. 

Several other choices of the values of the warping parameters L and IL‘I have 
been made but, as in I, we believe that the most appropriate is when both are 
given the value 0.1. This choice is presented in the figures. We note that, as the 
strength of coupling increases, the overlaps of the oscillator ground states Sf: and 
SE + SE. Thus the analytical method developed in I appears to be a good, simple 
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0.8 'I 

n n ,. 
I L J 4 3 D 

E E e l f iu~ 
F@re 3. The variation of the first-order reduction factor pas a function of E h / ( f i q ) ,  
where L (or IL'I) = 0.1. The key is as in figure 1. 

and accurate analytical method to use for calculating first-order RFS in the presence 
of warping terms as our results are in reasonable agreement with other resulb. (A 
similar comment was made in the case of the calculations for the inversion splitting 
discussed in I.) We note that, even though the values obtained are rather sensitive 
to the choice of L (or L'), they may be obtained directly from a trivial computer 
calculation. 
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4. Calculation of second-order reduction factors 

The general theory for the calculation of second-order RFS for orbital triplet systems 
was described originally in Polinger ef a1 (1991). The example of spin-rbit coupling 
was considered there for the T @ t ,  rr system. It was subsequently used by Hallam 
et a1 (1992) to calculate second-order terms, again for spin-orbit coupling, for the 
T 8 (e + tJ system. Also, Jamila er a1 (1992) considered the T @ JT system once 
more, but for perturbations V in which the orbital parts both had E symmetry, both 
had T, symmetry and also where they had mixed E and Tz symmetries. Here, we 
consider the case in which both perturbations V have E symmetry for the strongly 
coupled E @ e JT system with warping. 

Unfortunately, it is not possible to use this general theory for this problem as 
it generates 6r symbols which are zero, as each element is equal to E and also 
because the required quadratic combinations of the T operators are each zero. This 
means that the required RFS cannot be determined by the general formalism in cubic 
symmetry as the denominator, contained within the expression for the RF, is zero. 
A way forward would be to rewrite all the equations in the (correct) D,, symmetry 
which should be used throughout for perturbations of E symmetry. However, a 
much quicker and more direct methcd has been used instead. The RFS have been 
obtained by comparing the matrix elements of relevant operators between the vibronic 
states with those of the ’secondader’ effective Hamiltonian calculated within the 
corresponding orbital states (as in Dunn et a1 1990). 

R I Badran et a1 

This effective Hamiltonian can be written in the form (Bates ef a1 1991) 

M P  

where L Z P  and QBP are second-order orbital and other operators respectively 
which transform as M p ,  V‘’ are constants and Kc) are the new secondader RFS. 
(p  labels the component of the irreducible representation A l . )  For orbital doublets, 
we have 

Comparing (4.1) with the general effective Hamiltonian (2.2), we can write the 
contribution to the factors W, P and Q from secondader calculations in terms 
of the newly-defined secondarder ws K$ as (dropping the E @E label on them) 

(4.3) w = 3K(Z) P = If& Q = ICE (2) 
4 Ai 

together with the additional relations 

where the Vs and Qs will be defined later. 
The contributions to the RF from the excited vibronic states of different 

symmetries can be separated from each other. Thus we introduce the quantities 
RA,, RA, and RE, which correspond to those used in Jamila et a1 (1992), and write 
the secondader R F ~  in the form: 

(2) - 1(R KX’ = - f ( RA, + R& + 2RE) ICE) = 0 KE - 4 AI + RA2) (4‘5) 
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where 

and where 

where the energies EN( U, v) are given in I1 (equation (6.5)). The various summations 
are readily carried out by computer. The results obtained are shown in figure 4 in the 
form of plots of the second order RFS f K t )  and Kc) against KE/(hE) in units of 
(bE) taking L (or L') = 0.1. It is seen that both have their turning points around 
KE/(bE) = 1.3. (Note that in the above expression for f2, we have excluded the 
contribution from the inversion level as in Jamila er a1 1992. In the weak-coupling 
limit, this contribution is small; in the strong-coupling limit, it is necesaxy to define a 
different set of reduction factors which operate between the three degenerate vibronic 
states.) 

Figure 4. A plot of the mond-order reduction factors 5 KX) and Kf) as a function 
of KE/(hwe). 

No attempt has been made to include anisotropy in these calculations. An 
approximate method was used, with very successful results, in the case of the T @ tz 
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rr system (Bates er al 1991). However, it is not clear how the same ideas can be used 
here while a proper calculation is extremely complex. 

It is instructive to investigate the limiting values of the reduction factors in the 
strong-coupling limit. Thus we have 

R I Badmn et a1 

KE+m S E + 0  NE-1 N1(u,v)  = Nz(u,v)  + 4 
N 3 ( u , v ) - + 1  s E P ( u , u , v , v ) + o  

E i ( u , v ) - E F ) =  t i w E ( u + ~ ) + f h w E l ( v - u ) .  ( 4 4  

Assuming also that L -+ 0 in the strong-coupling limit, it is easily seen that 

Ei(u,u)  - E?) -+ twE(u + Y ) .  (4.9) 

Thus using the relation (Jamila et a1 1992) 

the secondader R F ~  have limiting values given by 

This additional information is useful as it shows that both second-order RFs in E@ e 
JT systems die away slowly in the strong-coupling region as the coupling strength 
increases. 

5. Uniaxial stress 

As stated earlier, the main interest in and need for second-order RFS in E @ e JT 
systems is in the modelling of experiments in which uniaxial stress is used. The effect 
of a stress is to displace all a u ”  and ions in the lattice by amounts depending upon 
the geometry of the stress and the crystal. This affects the cluster containing the 
ion so that the effective electric potential seen by the electrons associated with the 
impurity is changed in a symmetrical way. Within the cluster, these changes can be 
represented by giving the collective coordinates Q, specific values G!. 

Neglecting higher-order contributions and those which mix vibroluc states derived 
from other orbital states of the ion, the effective Hamiltonian describing a uniaxial 
stress is given by (2.2). Only E-type stress is effective in an E @ e JT system; the 
simplest case is when the stress is along the [a011 axis when only Ge is non-zero. 
Thus, in lint-order, the uniaxial stress may be obtained by substituting into (2.2) the 
values 

W = l  GI = O  P=O Q = q  G, = VEGe G, =O. (5.1) 

In second order, we use the values given in (43) and (4.4). The symmetry-adapted 
displacements QEp are, in general, quadratic combinations of the displacements Ge 
and Gc caused by the uniaxial stress. Thus we have (Jamila er al 1992) 
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and V z )  = V,'" = Vz. Further simplification occurs for stress along [OOI] with 
Q, = 0 so that only two terms remain in the effective Hamiltonian. One of these 
causes no splitting as it is of A, symmetly and thus we are left with just the term 

- 

The remaining step is to express the displacement ge appearing in both the Erst- 
and secondader effective Hamiltonians in terms of the applied pressure P and 
the relevant compliance tensors Sij. No further progres can be made in general 
terms but the formulae given are in a suitable form for modelling of a given set of 
experimental data. As stated in 11, such results are needed in the modelling of the 
data obtained from the GaP:Ti3+ system. The results will be reported later (Al-Shaikh 
et 01 1993) when the theoretical and experimental work is complete. 

6. Conclusions and discussion 

The main aim of this paper was to obtain analytical expressions for both Erst- 
and second-order RFS for the strongly coupled E @ e JT system with warping. The 
transformation method of Bates et a1 (1987), subsequently modified by the authors 
(DUM I%), has proved to be a good way of tackling the problem. Analytical 
expressions for the Erst-order RI% of the system were obtained both with and without 
anisotropic effects. On the whole, the agreement between the results of these 
analytical calculations and the previously published numerical calculation is reasonable 
in view of the differences between the basic assumptions of the two methods. It is 
also very relevant to point out that our method is generally much simpler to use. 

The transformation method has been particularly useful for the calculation of the 
secondader RFs which do not appear to have been calculated previously. The latter 
results could be particularly relevant in modelling experimental data in the presence 
of uniaxial stress. 

Finally, we note that Reik and Doucha (1986) have apparently obtained exact 
solutions to the unwarped E @ e JT problem in terms of generalized spheroidal 
wavefunctions It is not easy to see how this method could incorporate warping 
but, if this were possible, it would be very interesting to attempt a calculation of 
reduction factors based on these functions. 
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